$sin^4x+cos^4x$I should rewrite this expression into a new khung to plot the function.

Bạn đang xem: Solve: (sinx)^4 + (cosx) ^4 = 1

eginalign& = (sin^2x)(sin^2x) - (cos^2x)(cos^2x) \& = (sin^2x)^2 - (cos^2x)^2 \& = (sin^2x - cos^2x)(sin^2x + cos^2x) \& = (sin^2x - cos^2x)(1) longrightarrow,= sin^2x - cos^2xendalign

Is that true?


*

*

eginalignsin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\&=1^2-frac12(2sin xcos x)^2\&=1-frac12sin^2 (2x)\&=1-frac12left(frac1-cos 4x2 ight)\&=frac34+frac14cos 4xendalign


*

Let $$displaystyle y=sin^4 x+cos^4 x = left(sin^2 x+cos^2 x ight)^2-2sin^2 xcdot cos^2 x = 1-frac12left(2sin xcdot cos x ight)^2$$

Now using $$ sin 2A = 2sin Acos A$$

So, we get $$displaystyle y=1-frac12sin^2 2x$$


*

*

Note that $a^2 + b^2 = (a+b)^2 - 2ab$

$$(sin^2 x)^2 + (cos^2 x)^2 = (sin^2 x + cos^2 x)^2 - 2sin^2 xcos^2 x =(sin^2 x + cos^2 x)^2 - 2(sin xcos x)^2 = \ 1 -frac sin^2 2x2$$

Note the following results:

$$ sin^2 x + cos^2 x = 1$$

$$ sin x cos x = fracsin 2x2$$


Expand in terms of complex exponentials.

$$sin^4 x + cos^4 x = left( frace^ix - e^-ix2i ight)^4 + left( frace^ix + e^-ix2 ight)^4$$

Notice that $i^4 = +1$, so we get

$$sin^4 x + cos^4 x = frac116 left( 2e^4ix + 2 e^-4ix + 12 ight)$$

where we use the relation $(a+b)^4 = a^4 + 4 a^3 b + 6 a^2 b^2 + 4 ab^3 + b^4$. The terms of the form $a^3 b$ và $ab^3$ all cancel by addition.

This leaves us with a final result:

$$sin^4 x + cos^4 x = frac416 left(frace^4ix + e^-4ix2 ight) + frac1216 = frac34 + frac14 cos 4x$$


tóm tắt
Cite
Follow
answered Sep 30, năm ngoái at 17:14
MuphridMuphrid
18.7k11 gold badge2323 silver badges5555 bronze badges
$endgroup$
showroom a comment |
1
$egingroup$
If you want lớn express in functions of higher frequencies lượt thích this $$sum_k=0^N sin(kx) + cos(kx)$$ Then you can use the Fourier transform together with convolution theorem. This will work out for any sum of powers of cos và sin, even $sin^666(x)$.


nói qua
Cite
Follow
answered Sep 30, 2015 at 17:09
leveehandbook.netreadlerleveehandbook.netreadler
24k99 gold badges3333 silver badges8282 bronze badges
$endgroup$
add a comment |
0
$egingroup$
egineqnarraysin^4x + cos^ 4x &=& sin 4x + cos 4x+2 cos 2x sin 2x-2 cos 2x sin 2x \ &=& ( sin 2x + cos 2x)^2 -2 cos 2 sin 2 \ &=& 1-2 cos 2x sin 2x \&& (1-racine de 2 foi cos x sin x)(1+racine de 2 foi cos x sin x)endeqnarray


mô tả
Cite
Follow
edited Apr 16, 2017 at 20:14
Nosrati
29.3k77 gold badges3030 silver badges6262 bronze badges
answered Apr 16, 2017 at 19:14
Peter el kadiPeter el kadi
1111 bronze badge
$endgroup$
địa chỉ a bình luận |

Your Answer


Thanks for contributing an answer to leveehandbook.netematics Stack Exchange!

Please be sure khổng lồ answer the question. Provide details và share your research!

But avoid

Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.

Use leveehandbook.netJax to format equations. leveehandbook.netJax reference.

To learn more, see our tips on writing great answers.


Draft saved
Draft discarded

Sign up or log in


Sign up using Google
Sign up using Facebook
Sign up using email and Password
Submit

Post as a guest


Name
e-mail Required, but never shown


Post as a guest


Name
e-mail

Required, but never shown


Post Your Answer Discard

By clicking “Post Your Answer”, you agree to our terms of service, privacy policy and cookie policy


Not the answer you're looking for? Browse other questions tagged trigonometry or ask your own question.


Featured on Meta
Linked
8
Deriving an expression for $cos^4 x + sin^4 x$
0
Find $int_0^2pi frac1sin^4x + cos^4x dx$.

Xem thêm: Các Bài Tập Về Phương Trình Lượng Giác, Bài Tập Ôn Tập Phương Trình Lượng Giác Lớp 11


Related
1
Trigonometric Identities: $fracsin^2 heta1+cos heta=1-cos heta$
2
Simplifying second derivative using trigonometric identities
1
Simplify $-2sin(x)cos(x)-2cos(x)$
0
Simplify the expression và leave answer in terms of $sin x$ and/or $cos x$
0
How can we bound $fracsin( heta)cos( heta)$
1
Minimum value of $cos^2 heta-6sin heta cos heta+3sin^2 heta+2$
0
Transforming the equation $cot x -cos x = 0$ into the khung $cos x(1- sin x) = 0$
1
Simplify: $fracsin(3x-y)-sin(3y-x)cos(2x)+cos(2y) $
3
Simplify trigonometric expression using trigonometric identities
Hot Network Questions more hot questions

Question feed
Subscribe lớn RSS
Question feed lớn subscribe khổng lồ this RSS feed, copy and paste this URL into your RSS reader.


leveehandbook.netematics
Company
Stack Exchange Network
site kiến thiết / biểu tượng logo © 2022 Stack Exchange Inc; user contributions licensed under cc by-sa. Rev2022.3.24.41762


leveehandbook.netematics Stack Exchange works best with JavaScript enabled
*

Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device & disclose information in accordance with our Cookie Policy.