Các dạng toán phương trình lượng giác, phương pháp giải và bài tập tự cơ phiên bản đến cải thiện - toán lớp 11

Sau khi có tác dụng quen với các hàm lượng giác thì các dạng bài bác tập về phương trình lượng giác chính là nội dung tiếp sau mà các em sẽ học trong chương trình toán lớp 11.

Bạn đang xem: Các bài tập về phương trình lượng giác


Vậy phương trình lượng giác có các dạng toán nào, cách thức giải ra sao? bọn họ cùng khám phá qua nội dung bài viết này, đồng thời áp dụng các cách thức giải này để triển khai các bài bác tập trường đoản cú cơ phiên bản đến cải thiện về phương trình lượng giác.

I. Kim chỉ nan về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là một trong những cung thỏa sinα = a, lúc đó phương trình (1) có các nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α vừa lòng điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Khi đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có những nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 trong cung thỏa cosα = a, lúc đó phương trình (2) có những nghiệm là:

 x = ±α + k2π, ()

- Nếu α thỏa mãn nhu cầu điều khiếu nại 0 ≤ α ≤ π với cosα = a thì ta viết α = arccosa. Lúc đó các nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có những nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay điều kiện của phương trình (3) là: 

*

- Nếu α thỏa mãn nhu cầu điều khiếu nại

*

- Nếu α thỏa mãn điều kiện

*

II. Những dạng toán về Phương trình lượng giác và phương pháp giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng các công thức nghiệm tương ứng với từng phương trình.

* ví dụ 1 (Bài 1 trang 28 SGK Đại số và Giải tích 11): Giải các phương trình sau:

a) b)

b)

d)

*

* lời giải bài 1 trang 28 SGK Đại số với Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* lấy ví dụ 2: Giải các phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một trong những phương trình lượng giác gửi được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng những công thức biến đổi để đưa về phương trình lượng giác đã cho về phương trình cơ phiên bản như Dạng 1.

* ví dụ như 1: Giải những phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* lưu ý: Bài toán trên vận dụng công thức:

 

*
*

 

*
*

* ví dụ như 2: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu ý: bài toán áp dụng công thức thay đổi tích thành tổng:

 

*

 

*

 

*

* ví dụ như 3: Giải những phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* giữ ý: Bài toán trên có vận dụng công thức biến hóa tổng thành tựu và công thức nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình bậc nhất có một hàm con số giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* lấy ví dụ như 1: Giải các phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai tất cả một hàm số lượng giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta gồm phương trình at2 + bt + c = 0.

* lưu ý: Khi đặt t=sinx (hoặc t=cosx) thì phải gồm điều kiện: -1≤t≤1

* ví dụ như 1: Giải những phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 cần loại

*
*
 
*

* Chú ý: Đối với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Phương thức giải như sau:

 - Ta có: cosx = 0 chưa hẳn là nghiệm của phương trình do a≠0,

 Chia 2 vế đến cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - nếu phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta chũm d = d.sin2x + d.cos2x, cùng rút gọn mang đến dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ phương pháp 1: Chia nhị vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ biện pháp 2: Sử dụng công thức sinx cùng cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 đối với t.

* giữ ý: PT: asinx + bcosx = c, (a≠0,b≠0) có nghiệm lúc c2 ≤ a2 + b2

• Dạng tổng quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu giữ ý: bài toán vận dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng cùng với sinx cùng cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Bài Tập Trắc Nghiệm Phương Pháp Tọa Độ Trong Không Gian, 200 Có Lời Giải (Cơ Bản

* Phương pháp

- Đặt t = sinx + cosx, khi đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu ý: 

*
 nên điều kiện của t là: 

- cho nên vì thế sau khi tìm kiếm được nghiệm của PT (*) phải kiểm tra (đối chiếu) lại đk của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 chưa hẳn là PT dạng đối xứng tuy vậy cũng có thể giải bằng cách tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải những phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ cùng với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài bác tập về những dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số với Giải tích 11): Với đều giá trị nào của x thì giá trị của các hàm số y = sin 3x với y = sin x bởi nhau?

° giải thuật bài 2 trang 28 SGK Đại số và Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài xích 3 (trang 28 SGK Đại số 11): Giải các phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° giải mã bài 3 trang 28 SGK Đại số với Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT có nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT có nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số cùng Giải tích 11): Giải phương trình 

° giải thuật bài 3 trang 28 SGK Đại số và Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến trên đây ta cần đối chiếu với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT bao gồm họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số với Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải mã bài 1 trang 36 SGK Đại số và Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT bao gồm tập nghiệm 

*

* bài xích 2 (trang 36 SGK Đại số cùng Giải tích 11): Giải những phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° lời giải bài 2 trang 36 SGK Đại số và Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc ấy PT (1) trở thành: 2t2 – 3t + 1 = 0