Trong nội dung bài viết này, chúng tôi sẽ share lý thuyết và các dạng bài xích tập về phương trình lượng giác cơ bạn dạng giúp các ôn lại kiến thức để chuẩn bị hành trang thật kỹ cho những kỳ thi đạt kết qua cao nhé


Lý thuyết phương trình lượng giác cơ bản thường gặp2. Phương trình cos x = cos α, cos x = a (2)Các dạng bài xích tập về phương trình lượng giác

Lý thuyết phương trình lượng giác cơ bản thường gặp

1. Phương trình sin x = sin α, sin x = a (1)

Nếu |a|>1 thì phương trình vô nghiệm.

Bạn đang xem: Bài tập phương trình lượng giác có lời giải

Nếu |a|≤1 thì chọn cung α làm sao cho sinα=a. Lúc ấy (1)

*


Các ngôi trường hợp sệt biệt:

sin x = 0 ⇔ x = kπ (k ∈ Z)

sin x =1 ⇔ x = π/2 + k2π (k ∈ Z)

sin x = -1 ⇔ x = -π/2 + k2π (k ∈ Z)

sin x = ±1 ⇔ sin2x = 1 ⇔ cos2x = 0 ⇔ cosx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

2. Phương trình cos x = cos α, cos x = a (2)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì chọn cung α sao để cho cosα = a.

Khi kia (2) ⇔ cosx = cosα ⇔ x = ± α + k2π (k ∈ Z)

b. Cosx = a điều kiện -1 ≤ a ≤ 1

cosx = a ⇔ x = ± arccosa + k2π (k ∈ Z)

c. Cosu = cosv ⇔ cosu = cos( π – v)

d. Cosu = sinv ⇔ cosu = cos(π/2 – v)

e. Cosu = – sinv ⇔ cosu = cos(π/2 + v)

Các ngôi trường hợp sệt biệt:

*

3. Phương trình tung x = tan α, rã x = a (3)

Chọn cung α sao cho tanα = a. Khi đó (3)

*

Các trường hợp sệt biệt:

tanx = 0 ⇔ x = kπ (k ∈ Z)

tanx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

4. Phương trình cot x = cot α, cot x = a (4)

Chọn cung α làm sao để cho cotα = a.

Khi đó (3) cotx = cotα ⇔ x = α + kπ (k ∈ Z)

cotx = a ⇔ x = arccota + kπ (k ∈ Z)

Các ngôi trường hợp sệt biệt:

cotx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

cotx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

5. Phương trình bậc nhất đối với 1 hàm số lượng giác

Dạng asinx + b; acosx + b = 0; atanx + b = 0; acotx+ b = 0 (a, b ∈ Ζ, a ≠ 0)

Cách giải:

Đưa về phương trình cơ bản, lấy ví dụ như asinx + b = 0 ⇔ sinx = -b/a

6. Phương trình bậc hai đối với một hàm con số giác

Dạng asin2x + bsinx + c = 0 (a, b ∈ Ζ, a ≠ 0)

Phương pháp

Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t.

Ví dụ: Giải phương trình asin2x + bsinx + c = 0

Đặt t = sinx (-1≤ t ≤1) ta có phương trình at2 + bt + c = 0

Lưu ý khi để t = sinx hoặc t = cosx thì yêu cầu có điều kiện -1≤ t ≤1

7. Một vài điều phải chú ý:

a) lúc giải phương trình tất cả chứa những hàm số tang, cotang, có mẫu số hoặc đựng căn bậc chẵn, thì tuyệt nhất thiết đề nghị đặt đk để phương trình xác định

*

b) Khi kiếm được nghiệm phải kiểm tra điều kiện. Ta hay được sử dụng một trong những cách sau để kiểm soát điều kiện:

Kiểm tra trực tiếp bằng phương pháp thay quý hiếm của x vào biểu thức điều kiện.Dùng mặt đường tròn lượng giác để màn biểu diễn nghiệmGiải các phương trình vô định.

c) thực hiện MTCT nhằm thử lại các đáp án trắc nghiệm

Các dạng bài bác tập về phương trình lượng giác

Dạng 1: Giải phương trình lượng giác cơ bản

Phương pháp: Dùng những công thức nghiệm tương xứng với mỗi phương trình

Ví dụ 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6). C) tanx – 1 = 0

b) 2cosx = 1. D) cotx = tan2x.

Lời giải

a) sin⁡x = sin⁡π/6

*

b) 2cosx = 1 ⇔ cosx = ½ ⇔ x = ± π/3 + k2π (k ∈ Z)

c) tan⁡x = 1 ⇔ cos⁡x = π/4 + kπ (k ∈ Z)

d) cot⁡x = tan⁡2x

⇔cotx = cot(π/2 – 2x)

⇔ x = π/2 – 2x + kπ

⇔ x = π/6 + kπ/3 (k ∈ Z)

Ví dụ 2: Giải những phương trình lượng giác sau:

a) cos2 x – sin2x =0.

b) 2sin(2x – 40º) = √3

Lời giải

a) cos2x – sin2x=0 ⇔ cos2x – 2sin⁡x.cos⁡x = 0

⇔ cos⁡x (cos⁡x – 2sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Ví dụ 3: Giải những phương trình sau: (√3-1)sinx = 2sin2x.

*

Dạng 2: Phương trình hàng đầu có một các chất giác

Phương pháp: Đưa về phương trình cơ bản, ví dụ asinx + b = 0 ⇔ sinx = -b/a

Ví dụ: Giải phương trình sau:

*

Dạng 3: Phương trình bậc hai gồm một lượng chất giác 

Phương pháp

Phương trình bậc hai đối với một hàm số lượng giác là phương trình bao gồm dạng :

a.f2(x) + b.f(x) + c = 0 cùng với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta gồm phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm kiếm được t, từ bỏ đó kiếm được x

Khi đặt t = sinu(x) hoặc t = cosu(x), ta gồm điều kiện: -1 ≤ t ≤ 1

Ví dụ: sin2x +2sinx – 3 = 0

*

Ví dụ 2: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

*

Dạng 4: Phương trình bậc nhất theo sinx với cosx

Xét phương trình asinx + bcosx = c (1) cùng với a, b là các số thực không giống 0.

*

*

Ví dụ: Giải phương trình sau: cos2x – sin2x = 0.

*

Dạng 5: Phương trình lượng giác đối xứng, bội nghịch đối xứng

Phương pháp

Phương trình đối xứng là phương trình tất cả dạng:

a(sinx + cosx) + bsinxcosx + c = 0 (3)

Phương pháp giải:

Để giải phương trình trên ta áp dụng phép đặt ẩn phụ:

*

Thay vào (3) ta được phương trình bậc nhị theo t.

Ngoài ra chúng ta còn chạm chán phương trình bội nghịch đối xứng có dạng:

a(sinx – cosx) + bsinxcosx + c = 0 (4)

Để giải phương trình này ta cũng đặt

*

Thay vào (4) ta đạt được phương trình bậc nhị theo t.

Xem thêm: Các Dạng Toán Giới Hạn Một Bên Của Hàm Số Lớp 11 Từ Căn Bản Tới Nâng Cao

Ví dụ 1: Giải phương trình sau: 2(sinx + cosx) + 3sin2x = 2.

*

Hy vọng với những kiến thức mà công ty chúng tôi vừa chia sẻ có thể giúp các bạn hệ thống lại kiến thức về phương trình lượng giác cơ bạn dạng từ đó áp dụng vào làm bài xích tập mau lẹ và chính xác nhé