60 bài xích tập Hàm con số giác, Phương trình lượng giác gồm đáp án

Với 60 bài tập Hàm con số giác, Phương trình lượng giác tất cả đáp án Toán lớp 11 tổng hợp 60 bài xích tập trắc nghiệm gồm lời giải chi tiết sẽ giúp học viên ôn tập, biết phương pháp làm dạng bài bác tập Hàm số lượng giác, Phương trình lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Bạn đang xem: Các dạng bài tập phương trình lượng giác lớp 11

*

Bài 1: giá trị x ∈ (0,π) thoả mãn điều kiện cos2x + sinx – 1 = 0 là:

*

Lời giải:

Đáp án: A

cos2⁡x + sin⁡x-1 = 0 ⇔ -sin2⁡x+ sin⁡x=0

*

x ∈ (0,π) nên x = π/2 (k=0).

Bài 2: Tập nghiệm của phương trình: 3sin2x - 2√3 sinxcosx - 3cos2x = 0 là:

*

Lời giải:

Đáp án: A

3sin2⁡x - 2√3 sin⁡xcos⁡x - 3 cos2⁡x=0 (1)

Xét cos⁡x=0 (1) ⇔ sin⁡x=0 (vô lý do: sin2⁡x +cos2⁡x=1)

Xét cos⁡x ≠ 0. Phân chia cả hai vế của (1) đến cos2⁡x. Ta được :

3tan2⁡x-2√3 tan⁡x-3=0

*

Bài 3: Tổng những nghiệm của phương trình cos2x - √3sin2x = một trong các khoảng (0;π) là:

A. 0 B. π C. 2π D. 2π/3

Lời giải:

Đáp án: D

Ta tất cả

cos⁡2x - √3sin⁡2x=1

*

Bài 4: Giải phương trình sau:

*

*

Lời giải:

Đáp án: D

*

Vậy lựa chọn D.

Bài 5: Nghiệm của phương trình 2(sinx + cosx) + sinxcosx = 2 là:

*

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2. Khi ấy

*

Ta có phương trình sẽ cho có dạng:

*
*

Bài 6: Phương trình cos(πcos2x) = 1 tất cả nghiệm là:

*

Lời giải:

Đáp án: B

cos⁡(π cos⁡2x )=1

⇔ π cos⁡2x=k2π

⇔ cos⁡2x=2k. Để pt bao gồm nghiệm thì |2k| ≤ 1⇔|k| ≤ 1/2

Mà k nguyên ⇒ k=0

*

Bài 7: Tập nghiệm của phương trình tanx + cotx -2 = 0 là:

*

Lời giải:

Đáp án: B

ĐK: x ≠ kπ/2 (k ∈ Z)

tan⁡x + cot⁡x - 2=0

*

Bài 8: Phương trình 3sin2x + msin2x – 4cos2x = 0 tất cả nghiệm khi:

A. M = 4 B. M ≥ 4 C. M ≤ 4 D. M ∈ R

Lời giải:

Đáp án: D

3sin2⁡x + m sin⁡2x - 4cos2⁡x=0

Xét cos⁡x=0. PT vô nghiệm

Xét cos⁡x≠0. Chia cả hai vế của PT mang lại cos2⁡x:

3 tan2⁡x+ 2m tan⁡x-4=0

Δ"=m2+12 > 0 ∀m

⇒ PT luôn có nghiệm với ∀m.

Bài 9: Tập nghiệm của phương trình

*

*

Lời giải:

Đáp án: A

Ta tất cả PT

*

⇔ 1 + sin⁡x + √3cos⁡x = 2

*

Bài 10: Giải phương trình: cos2x.tanx = 0.

*

Lời giải:

Đáp án: D

ĐK: x ≠ π/2+kπ (k ∈ Z)

*

*

Bài 11: Nghiệm của phương trình |sinx-cosx| + 8sinxcosx = 1 là:

*

Lời giải:

Đáp án: C

Đặt t = sinx - cosx. Đk: |t| ≤ √2. Khi đó

*

Ta có: |t| – 4(1 - t2)=1

*
*

Bài 12: Điều khiếu nại của phương trình: cos3xtan5x = sin7x là:

*

Lời giải:

Đáp án: B

ĐKXĐ:

*

Bài 13: Tập nghiệm của phương trình 2cos25x + 3cos5x – 5 = 0 thuộc khoảng (0;π) là:

*

Lời giải:

Đáp án: B

2cos2⁡5x+3 cos⁡5x-5=0

*

Bài 14: Nghiệm của phương trình sin2x – sinxcosx = 1 là:

*

Lời giải:

Đáp án: A

sin2⁡x-sin⁡x cos⁡x=1 (1)

Xét cos⁡x=0. Ta tất cả (1) ⇔ sin2⁡x=1 ⇔ x = π/2+kπ (k ∈ Z).

Xét cos⁡x≠0. Chia cả hai vế của PT mang đến cos2⁡x ta có:

tan2⁡x - tan⁡x = 1/cos2⁡x

⇔ tan2⁡x - tan⁡x = tan2⁡x + 1

⇔ tanx = -1

*

Bài 15: Điều kiện của phương trình:

*
là:

A. Cos2x ≠ 0 C. Cos2x ≥ 0

B. Cos2x > 0 D. Không xác định tại đều x.

Lời giải:

Đáp án: C

ĐKXĐ: cos2x ≥ 0. Chọn C.

Bài 16: Tìm toàn bộ các giá trị thực của m đế phương trình sinx = m có nghiệm.

A. M ≠ 1 C. M ≠ -1

C. -1 ≤ m ≤ 1 D. M > 1

Lời giải:

Đáp án: C

sin⁡x = m có nghiệm ⇔|m| ≤ 1.

Bài 17: Một nghiệm của phương trình sin3x - cos3x = sinx –cosx là:

*

Lời giải:

Đáp án: A

PT ⇔ (sinx – cosx)( sin2x + cos2x + sinxcosx -1) = 0

*

Bài 18: Phương trình sinx = cosx gồm số nghiệm nằm trong đoạn <0;π> là:

A.1 B.4 C.5 D.2

Lời giải:

Đáp án: A

Ta gồm sinx = cosx

*

Do x ∈ <0;π> cần k = 0. Vậy chỉ có 1 nghiệm của phương trình nằm trong <0;π>.

Bài 19: Tập nghiệm của phương trình sin4x – 13sin2x + 36 = 0 là:

*

Lời giải:

Đáp án: D

sin4⁡x - 13sin2⁡x + 36 = 0

*

Bài 20: Nghiệm của phương trình cos2x - √3sin2x = 1 + sin2x là:

*

Lời giải:

Đáp án: D

cos2⁡x - √3 sin⁡2x = 1 + sin2⁡x (1)

Xét cos⁡x = 0. PT vô nghiệm

Xét cos⁡x ≠ 0. Chia cả 2 vế của PT đến cos2⁡x ta có:

*
*

*

Bài 21: Tập nghiệm của phương trình √3 sinx+cosx=1/cosx nằm trong (0;2π) là:

*

Lời giải:

Đáp án: A

ĐK: cosx ≠ 0.

*

Bài 22: Tìm tất cả các giá trị thực của m đế phương trình cosx - m = 0 bao gồm nghiệm.

A. M ∈ (-∞,-1> C. M ∈ (1,+∞>

C. M ∈ <-1,1> D. M ≠ -1

Lời giải:

Đáp án: C

cos⁡x - m = 0 gồm nghiệm ⇔ cos⁡x = m bao gồm nghiệm ⇔ |m| ≤ 1. Chọn C.

Bài 23: Tập nghiệm của phương trình tanx + cotx -2 = 0 là:

*

Lời giải:

Đáp án: B

*

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Ta bao gồm phương trình vẫn cho gồm dạng:

*

Bài 24: Phương trình sin2x = 1 tất cả nghiệm là:

*

Lời giải:

Đáp án: D

Hướng dẫn giải. Ta có: sin2x = 1 ⇔ 2x = π/2 + k2π ⇔ x = π/4 + kπ, k ϵ ℤ.

Từ đó suy ra câu trả lời là D.

Bài 25: Số thành phần thuộc tập nghiệm của phương trình 4sinx = 1/sinx trong tầm <0;2π}

A.2 B.4 C.6 D.8

Lời giải:

Đáp án: B

ĐK: sinx ≠ 0

4sin⁡x = 1/sin⁡x

⇔ sin2⁡x = 1/4

⇔ sin⁡x = ± 1/2

*

Bài 26: Số nghiệm của phương trình sin2x + 2sinxcosx + 3cos2x = 3 thuộc khoảng chừng (0; 2π)

A.1 B.2 C.3 D.4

Lời giải:

Đáp án: C

sin2⁡x + 2 sin⁡xcos⁡x + 3 cos2⁡x=3

Xét cos⁡x = 0. PT vô nghiệm

Xét cos⁡x ≠ 0. Chia cả 2 vế của PT đến cos2⁡x ta có:

tan2⁡x + 2 tan⁡x+3 = 3 tan2⁡x+3

⇔ tan2⁡x - tan⁡x = 0

*

Bài 27: Phương trình (m + 2)sinx – 2mcosx = 2(m + 1) bao gồm nghiệm khi:

*

Lời giải:

Đáp án: A

PT đã đến

*

⇔ 4(m+1)2 ≤ (m+2)2 + 4m2

⇔ mét vuông + 4m ≥ 0

*

Bài 28: Số nghiệm của phương trình sin(2x – 40º) = 1 cùng với -180º 3x + sin3x = sinx + cosx là:

*

Lời giải:

Đáp án: B

cos3x + sin3x = sinx + cosx ⇔ (sinx + cosx) (1 – sinxcosx) = 0

*

Bài 30: Phương trình sin2 (x/3) = 1 gồm nghiệm là:

*

Lời giải:

Đáp án: C

Ta có: sin2 (x/3) = 1 ⇔ cos2 (x/3) = 0 ⇔ x/3 = π/2 + kπ

*

*

Bài 31: trong khoảng (0;2π) phương trình cot2 x-tan2 x=0 gồm tổng các nghiệm là:

A. π B.2π C. 3π D. 4π

Lời giải:

Đáp án: D

*

cot2⁡x-tan2⁡x=0

⇔ cot2⁡x= tan2⁡x

*

Trong (0,2 π) có các nghiệm: π/4 ,5π/4 ,3π/4 ,7π/4 cùng tổng các nghiệm là 4π. Chọn D

Bài 32: Nghiệm của phương trình -2sin3x + 3cos3x – 3sinxcos2x – sin2xcosx = 0 là:

*

Lời giải:

Đáp án: A

-2 sin3x+3 cos3x-3 sin⁡x cos2⁡x-sin2⁡x cos⁡x=0

⇔ -2sin3x+3 cos3x-3 sin⁡x (2cos2⁡x-1 )-sin2⁡x cos⁡x=0 (1)

Xét cos⁡x=0. Ta tất cả (1) ⇔-2sin3x+3 sin⁡x=0

*

Xét cos⁡x ≠ 0 phân tách hết cả 2 vế của (1) đến cos3x. Ta có

-2tan3x+3-6 tan⁡x+3 tan⁡x (tan2⁡x+1)-tan2⁡x=0

⇔ tan3x-tan2⁡x-3 tan⁡x+3=0

*

Bài 33: Tập nghiệm của phương trình sin2x - √3sinxcosx + cos2x = 0 là:

*

Lời giải:

Đáp án: C

sin2⁡x-√3 sin⁡x cos⁡x+ cos⁡2x=0

*

Bài 34: Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình tanx = 1:

A.sinx = √2/2 B. Cosx = √2/2 C.cotx = 1 D. Cot2x = 1

Lời giải:

Đáp án: C

tan⁡x = 1 ⇒ cot⁡ x = 1

Bài 35: mang đến phương trình 3√2 (sinx+cosx)+2sin2x+4=0. Đặt t = sinx + cosx, ta được phương trình nào dưới đây?

A. 2t2 + 3√2 t+2=0 B. 4t2 + 3√2 t +4=0

C. 2t2 + 3√2 t-2=0 D. 4t2 + 3√2 t- 4=0

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình đang cho tất cả dạng:

3√2 t + 2(t2-1) + 4 = 0 ⇔2t2+ 3√2 t + 2 = 0. Lựa chọn A.

Bài 36: Phương trình 2cosx - √3 = 0 có tập nghiệm trong tầm (0;2π) là:

*

Bài 37: cực hiếm nào là nghiệm của phương trình tan3x.cot2x = 0

*

Lời giải:

Đáp án: D

*

tan⁡3x.cot⁡2x=0

*

Kết hợp với điều khiếu nại ta chọn D.

*

Bài 38: mang đến phương trình 5sin2x + sinx + cosx + 6 = 0. Trong những phương trình sau, phương trình như thế nào không tương tự với phương trình đã cho?

*

Lời giải:

Đáp án: D

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình vẫn cho gồm dạng:

5(t2-1)+t+6=0 ⇔ phương trình vô nghiệm. Lựa chọn D

Bài 39: Phương trình sin(πcos2x) = 1 có nghiệm là:

*

Lời giải:

Đáp án: D

Ta gồm sin(πcos2x) = 1 ⇔ π cos2x = π/2 + k2π, k ∈ ℤ

*

⇔ cos2x = 50% +2k, k ∈ ℤ. Bởi - 1 ≤ cos2x ≤ 1 và k ∈ ℤ nên k = 0 và vì vậy phương trình sẽ cho tương tự với

cos2x = 1/2 ⇔ 2x = ±π/3 + k2π ⇔ x = ±π/6 + kπ. Vậy câu trả lời là D.

Bài 40: Số địa chỉ biểu diễn các nghiệm của phương trình 2cos2x + 5cosx + 3 = 0 trên tuyến đường tròn lượng giác là?

A. 1 B. 2 C. 3 D. 4

Lời giải:

Đáp án: A

2cos2⁡x+5 cos⁡x+3=0

*

Bài 41: Phương trình nào sau đây có tập nghiệm trùng với tập nghiệm của phương trình? sin2 x+ √3 sinxcosx=1

*

Lời giải:

Đáp án: D

sin2⁡x+√3 sin⁡x cos⁡x=1

*

Bài 42: Số nghiệm của phương trình sin2x + √3cos2x = √3 trên khoảng chừng (0, π/2) là?

A. 1 B. 2 C. 3 D. 4

Lời giải:

Đáp án: A

sin⁡2x+ √3 cos⁡2x=√3

*

Bài 43: Số nghiệm của phương trình là:

A.1 B.2 C.3 D. vô số.

Lời giải:

Đáp án: B

*

Bài 44: bao gồm bao nhiêu cực hiếm nguyên của thông số m để phương trình sinxcosx – sinx – cosx + m = 0 tất cả nghiệm?

A.1 B. 2 C. 3 D.4

Lời giải:

Đáp án: A

Đặt t = sinx + cosx. Đk: |t| ≤ √2.

*

Phương trình vẫn cho gồm dạng:

(t2-1)/2 - t + m = 0 ⇔ t2- 2t + 2m - 1 = 0 (2). Ta tất cả ∆’ = 2 – 2m.

Để phương trình đã cho có nghiệm thì phương trình (2) phải gồm nghiệm cùng trị tuyệt vời của nghiệm nhỏ hơn √2

*

m nguyên đề xuất m = 1.

Bài 45: Phương trình cos(x/2) = - 1 tất cả nghiệm là:

A.x = 2π + k4π, k ∈ ℤ.

B.x = k2π, k ∈ ℤ.

C.x = π + k2π, k ∈ ℤ.

D.x = 2π + kπ, k ∈ ℤ.

Lời giải:

Đáp án: A

cos(x/2) = - 1 ⇔ x/2 = π + k2π ⇔ x = 2π + k4π. Lựa chọn A

Bài 46: Tìm toàn bộ các quý hiếm thực của tham số m nhằm phương trình tanx + mcotx = 8 có nghiệm.

A. m > 16 B.m 2⁡x + 8 tan⁡x + m = 0

Δ" = 16-m. Để pt tất cả nghiệm thì Δ" ≥ 0 ⇔ m ≤ 16.

Bài 47: cho phương trình cos2 x-3sinxcosx+1=0. Mệnh đề nào sau đây là sai?

A. x=kπ ko là nghiệm của phương trình.

B. Nếu phân chia hai vế của phương trình mang đến cos2 x thì ta được phương trình tan2 x-3tanx+2=0.

C. Nếu phân chia 2 vế của phương trình mang đến sin2 x thì ta được phương trình 2cot2 x+3cotx+1=0.

D. Phương trình đã cho tương đương với cos2x-3sin2x+3=0.

Lời giải:

Đáp án: C

Xét câu A :

*

⇒ PT ⇔ 1-0+1=0 (vô lý)

Vậy câu A đúng

Xét câu B : phân chia cho cos2⁡x. Ta gồm

*

⇔ tan2⁡x-3 tan⁡x + 2 = 0. B đúng

Xét câu C. Phân tách cho sin2⁡x ta có

*

⇔ 2cot2⁡x-3 cot⁡x + 1 = 0. Sai

Chọn C

*

Bài 48: Tìm tất cả các quý hiếm thực của thông số m nhằm phương trình cosx + sinx = √2(m2 + 1) vô nghiệm.

A. m ∈ (-∞;-1)∪(1; +∞) B. m ∈ <-1,1>

C. m ∈ (-∞; +∞) D. m ∈ (-∞;0)∪(0; +∞)

Lời giải:

Đáp án: D

*

Để PT vô nghiệm thì m ≠ 0. Lựa chọn D.

Bài 49: Tổng những nghiệm của phương trình tan5x – tanx = 0 trên nửa khoảng

A. π B.2 π C. 3π/2 D. (5 π)/2.

Lời giải:

Đáp án: C

*

Bài 50: tự phương trình 5sin2x – 16(sinx – cosx) + 16 = 0, ta tìm được sin(x - π/4) có mức giá trị bằng:

A. √2/2 B. -√2/2 C. 1 D. ± √2/2

Lời giải:

Đáp án: A

*

Bài 51: Phương trình cos23x = 1 tất cả nghiệm là:

A.x = kπ, k ∈ ℤ.

B.x = kπ/2, k ∈ ℤ.

C.x = kπ/3, k ∈ ℤ.

D.x = kπ/4, k ∈ ℤ.

Lời giải:

Đáp án: C

cos23x = 1 ⇔ 3x = kπ ⇔ x = kπ/3 (k ∈ Z). Lựa chọn C.

Bài 52: Tìm toàn bộ các giá trị thực của thông số m để phương trình cos2x – (2m + 1)cosx + m + 1 = 0 bao gồm nghiệm trên khoảng chừng (π/2, 3π/2).

A. -1 2⁡x (2m+1) cos⁡x+m=0

*

Để PT tất cả nghiệm trên (π/2, 3π/2)thì thì cosx 2 x+(m-2)sin2x+3cos2 x=2 tất cả nghiệm?

A. 16 B. 21 C. 15 D. 6

Lời giải:

Đáp án: C

Xét cos⁡x = 0. Lúc đó PT ⇔ 11.1=2 (vô lý)

Xét cos⁡x ≠ 0. Chia cho cos2⁡x . Ta được :

11 tan2⁡x + 2(m-2) tan⁡x + 3 = 2 tan2⁡x + 2

⇔ 9tan2⁡x + 2(m-2) tan⁡x + 1 = 0

Để PT gồm nghiệm ⇔ ∆"=(m-2)2-9 = m2-4m-5 ≥ 0

*

m ∈ <-10,10>,m nguyên ⇒ bao gồm 15 giá bán trị. Lựa chọn C.

Xem thêm: Một Số Phương Trình Lượng Giác Không Mẫu Mực Cực Hay, Một Số Phương Trình Lượng Giác Không Mẫu Mực

Bài 54: gồm bao nhiêu giá trị nguyên của tham số m thuộc đoạn <-10; 10> nhằm phương trình ( m + 1)sinx – mcosx = 1 – m tất cả nghiệm.